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Under the extreme conditions of massive white dwarfs, which have ionic densities that exceed 1029 cm−3,
the ions can be both very strongly coupled and partially degenerate. We present a simple model for self-
diffusion in such white dwarfs that utilizes the known one-component plasma diffusion coefficient and scalings
derived from the short-time expansions of the velocity autocorrelation function and the memory function. Since
the ions are weakly degenerate, we utilize a simple semiclassical correction to the classical dynamics. We find
enhanced diffusion, relative to the purely classical calculation, which is more significant at smaller values of
the Coulomb coupling parameter.
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I. INTRODUCTION

The end point of stellar evolution of more than 95% of
stars is the white dwarf phase in which nuclear fuel no longer
burns, residual energy radiates away, and the star slowly
cools. Our knowledge of white dwarf evolution depends in
part upon uncertainties in the microphysical processes that
affect energy transport. Typical mass-radius relationsf1g for
white dwarf stars indicate that the ionic densityn can be-
come quite high; in particular, higher mass stars correspond
to smaller radius stars, which implies very dense cores in
massive white dwarfs. Particle densities and temperatures are
in the n,1028–1030 cm−3 and T,105–107 K ranges, re-
spectively, with older stars being cooler. These conditions
place the stars in the strongly coupled Coulomb liquid phase
in which the collisional mean free path can be less than the
interparticle spacing and is, therefore, a meaningless con-
cept; as the stars cool, crystallization occurs and processes
such as diffusion eventually cease. Strong Coulomb coupling
is defined in terms of the Coulomb coupling parameterG
=sZed2/ saTd, where Ze is the ionic charge anda
=s3/4pnd1/3 is the ion-sphere radius. Quantum corrections to
ionic propertiesf3g, such as the equation of statef4g, can be
non-negligible under such conditions because the ionic ther-
mal deBroglie wavelengthLth=Î2p"2/MT sM is ionic
massd becomes comparable to the interionic spacing, which
is of order the ion-sphere radius. The degeneracy can be
characterized byLth/a=Î2pG /Rs, where the dimensionless
quantum density parameterRs=a/aBi is the ratio of the ion-
sphere radius and theionic Bohr radius aBi ="2/MsZed2.
Typically, Rs is in the rangeRs,103–104, which reveals that
Lth/a,0.05–0.5 for typical conditions of a massive white
dwarf with the largest values occurring for light elements
se.g., heliumd and cooler temperatures. One such microphysi-
cal process is that of gravitational settling of impurities,
which occurs at a rate determined by the diffusion coefficient
f2g. Since white dwarf cooling is affected by energy transport
processes, it is of interest to understand diffusion in the
strong-coupled, mildly degenerate Coulomb liquid regime.

Bildsten and co-workersf2g have argued that some impu-
rities settle towards the center of the star and thereby release
gravitational energy that, in turn, affects the luminosity. Al-

though there are many impurities, those that settle due to the
internal electric field are those that have a neutron excess,
and 22Ne is the dominant speciessmass fraction 0.02d with
that property. As the22Ne drifts towards the center through
the strongly coupled Coulomb liquid of mainly carbon
and/or oxygen, the physical conditions vary from weakly
coupled through crystallization, if the star is well evolved. In
the weakly coupled regime,G!1, diffusion can be described
in terms of a sequence of independent binary collisions be-
tween Debye-screened particlesf5g. At moderate couplings,
G,1, the collisions become strong and the simple Debye
screening picture begins to lose its validity. Under conditions
of strong coupling,G*10, the plasma shows liquidlike be-
havior in which particles experience rapid oscillations in a
transient cage formed by its nearest neighborsf6g and the
usual picture of a collision becomes inappropriate. As the
coupling is further increased towards crystallization, collec-
tive modes play an important role and diffusion is dominated
by many-body physics. White dwarfs, due to their diversity
in size, composition, and evolutionary path, cover all re-
gimes of diffusion.

A reduced model for impurity diffusion in white dwarfs
has been constructed by Bildsten and co-workersf2g. In their
model, the electrons form a uniform neutralizing background
and the star’s composition is taken to be described by a
single speciesscarbon or oxygend characterized byG. Their
model allows the use of theclassicalone-component plasma
sOCPd diffusion coefficientf7g

D = vpa
22.95

G1.34, s1d

wherevp=Î4psZed2n/M is the ion plasma frequency, and it
is assumed that diffusion ceasessD=0d upon crystallization
sG.173d. Our goal is to extend the classical results1d into
the quantal regime under the reasonable assumption that the
extensions are small. This assumption allows us to use a
simple, classical-looking model for the ions. Our model is
described in the first section and its thermodynamic predic-
tions are discussed. In the following section, a model for the
diffusion coefficient is presented that employs properties of
the velocity autocorrelation function and its memory func-
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tion f8g that relate the known results1d to the quantal result.
Finally, simple fits and a discussion are given.

II. SEMICLASSICAL MODEL

White dwarf interiors consist of fully ionized, strongly
coupled ions embedded in a homogeneous sea of very de-
generate electrons. For this reason, white dwarfs are often
considered to be the best realization of the OCP model. Be-
cause the quantal modifications are expected to be small
sLth,ad, we use a semiclassical extension of the OCP model
in which the classical ionic dynamics is modified via an ef-
fective pair interactionf9g, viz.,

vsrd =
sZed2

r
s1 − e−r/Ld. s2d

Here the parameterL is of orderLth andr is the ionic sepa-
ration. Such a model accounts for the finite extent of the
ionic wave function by smearing the usual Coulomb diver-
gence at smallr on the length scale ofLth. This semiclassical
OCP model is obtained from a semiclassical electron-ion
plasma in the limit of homogeneous electrons. Although it is
not necessary to do so, we assume that the semiclassical
OCP can be described by a single parameter,L, which we
take to be an adjustable parameter that can be determined in
a variety of ways, including by matching properties obtained
from Eq. s2d to results from, e.g.," expansionsf4g or path-
integral Monte-Carlo calculationsf11g. Often the specific
form L=Lth/Î2p2 is usedf9g. For a semiclassical system of
N ions in volumeV, the Hamiltonian can be written as

H = o
i=1

N
pi

2

2M
+ V, s3d

where the potential energy is

V =
1

2o
i=1

N

o
jÞi

N

vsr ijd − no
i=1

N E
V

d3r vsur − r iud + V0. s4d

HereV0 is the potential energy of the background. Given Eq.
s3d, we can estimate how quantum effects modify the trans-
port properties in white dwarf interiors.

As a simple test of the validity of our models3d, we can
compute the total energy densityu and compare it with re-
sults obtained from different methods. For a system charac-
terized byG and l;L /a, the sdimensionlessd total energy
density is

usl,Gd =
kHl
NT

=
3

2
+

3G

2
E

0

`

dR R2ṽsRdfgsR,G,ld − 1g,

s5d

wheregsR,G ,ld is the ionic pair distribution function, the
brackets k¯l indicate ensemble averaging,ṽsRd=1/Rs1
−e−R/ld, andR=r /a. The relations5d is similar to the stan-
dard expression foru of neutral fluids, with the exception
that the background contribution enters via the −1 term in the
integral. In order to discuss the semiclassical correction to
the OCP, Eq.s5d is decomposed as

usl,Gd = uOCPsGd + dusl,Gd, s6d

where uOCPsGd;us0,Gd is the total energy density of the
classical OCPf12g. To evaluatedusl ,Gd, the only unknown
quantity is the pair distribution functiongsR,G ,ld. For sys-
tems with long-range interactions it is known that this can be
computed to high accuracy using the hypernetted chain
sHNCd equations. Although greater accuracy could be
achieved by including a bridge function, we note that the
bridge function consistent with Eq.s2d is not known and the
uncertainties in the models are likely to be larger than uncer-
tainties created by the neglect of the bridge function. Of
particular difficulty is the resolution of the scalel, which
tends to zero in the classical limit. As such, we employ a
fast-Fourier transform in a standard HNC code with 16 384
bins within the rangeR=0–50; this corresponds to a bin size
of orderdR,0.003. A simple relaxation algorithm was also
used that allows easy computation over the entire fluid re-
gime f10g. In practice, quantities were computed fromG
=10–170. Some typical HNC results are shown in Fig. 1 for
G=10 andl=0.02,0.1,0.2.

We have computed the semiclassical correctiondusl ,Gd
over the rangel=0.02–0.3 and fit the results to obtain

dusl,Gd < Î2l2G. s7d

We can compare Eq.s7d with the exact result to order"2 f4g
of G2/4Rs. Here, if we make the common choice ofL

=Lth/Î2p2 f9g, we obtaindusl ,Gd=Î2G2/pRs. This result
reveals that the scaling withG and l is correct and that,
numerically, there is agreement to within a factor of less than
2. This agreement suggests that the semiclassical models2d
might be reasonable for describing diffusion; however,
higher-order" correctionsf4g tend to spoil this agreement,
suggesting that Eq.s2d is approximately valid to order"2.
Figure 2 compares the total energy based on Eq.s2d with the
"4 expansion of Hansen and Vieillefossef4g and a path-
integral Monte CarlosPIMCd result of Jones and Ceperley
f11g. This result indicates that our models2d yields superior

FIG. 1. The logarithm of the radial distribution functiongsR,ld
is shown forG=10 and the three valuesl=0.02,0.1,0.2 as com-
puted within the HNC approximation. Note that the ionic structure
is modified only at smallr and is nonzero atr =0.

J. DALIGAULT AND M. S. MURILLO PHYSICAL REVIEW E 71, 036408s2005d

036408-2



results to both the classical and the"4 expansion at largeG.
This result, however, fortuitously arises because of the poor
convergence of the"2 expansion. The range of applicability
of our model is clearlyRs.200, althoughL could be chosen
to match the excess energy of the PIMC result for smallRs.

III. SELF-DIFFUSION COEFFICIENT

Plasma diffusion coefficients are typically obtained from a
transport cross section that can be obtained either classically
or quantum mechanicallyf13g. In the strongly coupled
plasma regime, however, there are important structural and
collective phenomena that are not accounted for in the
simple binary collision picture. We therefore begin with the
fact that diffusion is a measure of the mean-squared displace-
ment of a single particle, which can be related to the velocity
autocorrelation functionsVACFd as

D = lim
t→`

1

6t
kur istd − r is0du2l s8d

=
T

M
E

0

`

dt Zstd, s9d

whereZstd is the normalized VACFf14g,

Zstd = kvistd ·vis0dl/kvi
2s0dl. s10d

Here r istd and vistd are the position and velocity of any
tagged particle in the system at timet. Despite the apparent
simplicity of this formulation, the calculation of the diffusion
coefficient is an example of the many-body problem. Many
approaches, including the memory function formalism and
kinetic theory, have been devised to model the VACF in
simple liquids. The major difficulty arises from the fact that
the diffusion coefficient depends on dynamical processes oc-
curring over disparate time scales. In the case of the classical

OCPf7g, it is known that the VACF is strongly affected by
both binary collisions and collective effects, and that simple
approximations for the VACF, or its memory function, can-
not accurately describe the diffusion coefficientssee belowd.
In order to cope with this problem and keep the model
simple, our approach proceeds as follows. Suppose that we
have a model forDsld<Dmodelsld, whereDmodelsld depends
on quantities that we are able to calculate, like the pair dis-
tribution function. The ratio Rsld=Dmodelsld /Dmodels0d
yields an approximation of the scaling between the semiclas-
sical and the classical diffusion coefficient. Our approach is
to assume that this scaling is exact, viz.,

Dsld = RsldDC, s11d

with DC=Ds0d the classical OCP diffusion coefficient. A
good estimate ofDC obtained with molecular-dynamics tech-
niques is given by Eq.s1d, which, when combined with a
model for Rsld, allows one to evaluate the semiclassical
diffusion coefficientDsld. Because of the emphasis placed
upon the classical result, we improved Eq.s1d by combining
the original data with that from Ranganathanet al. f15g and
fitted the data to the form suggested by Robbinset al. f16g to
obtain

DC
* = 0.0028 + 0.00525S173

G
− 1D1.154

. s12d

This form, with three parameters, describes deviations from
the simple, power-law fit used to obtain Eq.s1d. The dimen-
sionless diffusion coefficient is defined asD* =D /vpa

2. We
have considered two models forRsld=Dsld /Ds0d that de-
pend on spatial correlation functions. Since the models em-
ploy different correlation information, we will have an esti-
mate of the sensitivity to a particular model.

The first model is obtained from the short-time expansion
of Zstd in the following manner. The leading-order terms in
such an expansion are

Zstd = 1 −vE
2 t2

2
+ ¯ , s13d

wherevE
2 =sM /3Tdkv̇i

2l is known as the Einstein frequency.
Any function fstd satisfying Eq.s13d up to second-order in
time andI =e0

`fstddt,` is a possible approximation forZstd,
exact up to the second-order in time; an example is given by

the Gaussian approximationZstd<e−vE
2st2/2d. For the diffusion

coefficient, one obtains

Dsld <
T

M
I . s14d

Note that in our model theexactvalue of the integralI does
not matter as we consider the ratioRsld=Dsld /Ds0d. The
Einstein frequency can be written explicitly in terms of the
ionic radial distribution function as

vE
2sld =

n

3M
E d3r¹2vsrdfgsr,G,ld − 1g. s15d

The many-body contributions to the diffusion of a single
particle enter here throughgsr ,G ,ld. Following the proce-

FIG. 2. The thermal excess energyDE/NT=sE−EBCC
M d /NT of

the OCP is shown based on Eq.s2d with L=Lth/Î2p2 ssolid,
“SC”d, the Hansen-Vieillefosse"4 expansionsdot-dash, “HV”d, and
the Jones-Ceperley PIMCstriangles, “PIMC”d result vsG for fixed
Rs=200. The reference BCC Madelung energy isEBCC

M /NT
=−1.791 85G /2.
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dure described before, our approach yields the approxima-
tion

R1sld = Sl−2E
0

`

dR Re−R/lf1 − gsR,G,ldgD−1/2

, s16d

which has the limitDsld→DC asl→0.
The second model is obtained by approximating of the

memory functionMstd of the VACF. Recall thatMstd and
Zstd are linked to each other by the generalized Langevin
equation

d

dt
Zstd = −E

0

t

dt8Mst8dZst − t8d, s17d

and that the diffusion coefficient is exactly given by

D =
T

MSE
0

`

MstddtD−1

. s18d

Approximations forMstd can be constructed from the short-
time expansion

Mstd = vE
2S1 −

t2

t2 + ¯ D , s19d

with

vE
2

t2 = −
M

3T
kr̈ i

2l + vE
4 . s20d

Any function fstd satisfying fstd=1−t2+¯ and I =e0
`fstddt

,` defines an approximation of the memory function
Mstd<vE

2 fst /td, exact up to the second-order in time; an
example is given byfstd=sech2st /td. For the diffusion coef-
ficient, one obtains

Dsld <
T

MvE
2t

1

I
. s21d

Such approximations have been widely used for neutral liq-
uids and are referred to as the “binary-collision” approxima-
tion, as they essentially describe well the short-time dynam-
ics of the memory function when binary collisions dominate.
The timet is interpreted as the duration of a binary collision.
In our model, the exact value of the integralI does not matter
as we consider the ratioDsld /Ds0d. In order to use this
model, we need to determinet or equivalently the moment
kr̈ i

2l fsee Eq.s20dg. Introducing the triplet distribution func-
tion

n2gs3dsr ,r 8d =
1

N
o

i,jÞi,lÞi,j

N

kdsr − r i jddsr − r ildl, s22d

the momentkr̈ i
2l is explicitly

kr̈ i
2l =

2nT

3m3o
a,b
E d3rS ]2vsrd

]ra]rb
D2

gsrd

+
n2T

3m3o
a,b
E d3rd3r8S ]2vsrd

]ra]rb
DS ]2vsr8d

]ra8]rb8
D

3fgs3dsr ,r 8d + 1g, s23d

which differs from the expression for neutral liquids by the
term +1 in the last integral. In the absence of detailed knowl-
edge ofgs3d, we evaluate the second term on the right-hand
side of Eq.s23d with the Kirkwood approximation

gs3dsr ,r 8d < gsrdgsr8dgsur − r 8ud

= gsrdgsr8dH1 +
1

8p3n
E d3qfSsqd − 1g

3e−iq·sr−r8dJ ,

whereSsqd is the static structure factor. After some tedious
manipulations, we obtain the approximation

vE
2

t2 = Svp
2

3
D2E

0

`

dR R2gsRdFṽ9sRd2 + 2S ṽ8sRd
R

D2G
−

vp
2

3
SvE

2 −
vp

2

3
D +

1

9p
Svp

2

3
D2E

0

`

dQQ2fSsQd − 1g

3fgL
2sQd + 2gT

2sQdg s24d

with

gLsQd =E
0

`

dR R2gsRdFh j0sQRd − 2j2sQRdjṽ9sRd

+ 2h j0sQRd + j2sQRdj
ṽ8sRd

R
G , s25d

gTsQd =E
0

`

dR R2gsRdFh j0sQRd + j2sQRdjṽ9sRd

+ h2j0sQRd − j2sQRdj
ṽ8sRd

R
G , s26d

where

j0sxd =
sinsxd

x

and

j2sxd =
3

x2Fsinsxd
x

− cossxdG −
sinsxd

x

are the spherical Bessel functions of order 0 and 2, respec-
tively, andQ=aq. Following the procedure described before,
our approach yields the approximation

R2sld =
ts0d
tsld

, s27d

with tsld given by Eq.s24d.
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We compare in Fig. 3 the fits12d to classical OCP predic-
tions based on Eq.s14d with I =Îsp /2ds1/vEd sGaussian ap-
proximationd and Eq.s19d with I =1 shyperbolic secant ap-
proximationd to assess the accuracy of the models. Note that
both models are accurate to within a factor of about 2, which
indicates that models forZstd andMstd can reasonably well
predict diffusive behavior over the entire fluid regime. It is
interesting that Eq.s19d underestimates Eq.s12d for the OCP,
since results for neutral fluids suggest the reversef8g.

Next we have computed Eqs.s16d ands27d over the same
range of parameters. The resulting data were fit to the form

DZ
* sld = DC

* F1 + 14.1l4.9+
11 238.7l6.355

1 + 2341.7l4.537G
−1G ,

DM
* sld = DC

* f1 + 46.2l4.72− 0.007 53l3.20Gg. s28d

Predictions from Eq.s28d are shown in Fig. 4 forl

=0.1,0.2,0.3. These results illustrate that the quantal correc-
tions are quite small whenl,0.1 and that the correction is
more important for smallG.

For very dense white dwarfs, we expect enhanced diffu-
sion and therefore expedited sedimentation. Consider, for ex-
ample, a pure carbon white dwarf with mass 1.2MO, radius
R=0.006RO, and temperatureT=107 K. Such a star would
have an ion number density of aboutn=431029 cm−3 or,
equivalently, an ion-sphere radius ofa=8.5310−11 cm.
These conditions correspond toLth/a<0.17 for which Eq.
s28d predicts an,1% correction in the strongly coupled fluid
regime. Typical choices forl f9g will tend to have even
smaller corrections. The quantal enhancement is expected to
be larger than this example at higher densities, for lighter
elementsse.g., heliumd, and at lower temperatures.

IV. DISCUSSION

To describe diffusive transport in massive white dwarf
stars, we have constructed a model based on the effective
semiclassical potentials2d. Since this model can also predict
thermodynamic quantities, we have compared the energy
with two other approaches to evaluate the accuracy of such
an approach. We found that Eq.s2d is accurate to order"2,
but does not have the more unphysical behavior of the next
"4 correction. Comparison with PIMC results indicates that
our model becomes inaccurate forRs&200. This suggests
that a detailed description of quantum dynamics will require
a treatment beyond an" expansion.

Because the diffusion coefficient is difficult to calculate in
the strongly coupled regime, we presented a model that em-
ploys the known diffusion coefficient of the classical OCP
from molecular-dynamics simulation. We have given a
slightly different fit s12d to the simulation results, due to the
reliance on the classical limit. We should mention, however,
that the original simulation results of Hansen, McDonald,
and Pollockf7g were only accurate to about 20%, mainly due
to the fit. In Fig. 5, we show the ratio of our fits12d to the
original fit s1d, which indeed has an overall variation of

FIG. 3. The OCP diffusion coefficient is shown based on the fit
s12d to molecular-dynamics datassolidd, the Gaussian approxima-
tion for the VACF sdashedd, and the hyperbolic secant approxima-
tion for the memory functionsdot-dashd. This result indicates the
level of accuracy of the two theoretical models.

FIG. 4. The correction factorDSC
* /DC

* versus coupling param-
eter G for two values ofl: l=0.2,0.3. Note that the correction is
small for l,0.2 and decreases for increasingG.

FIG. 5. The ratio of Eq.s12d to Eq. s1d is shown vsG. This
indicates that the error of the fit is of the order of the semiclassical
correction.
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about 20%. Less is known about the systematic errors of the
simulations themselves and sources of these errors merit fur-
ther study.

To obtain the semiclassical diffusion coefficient from the
classical result, we use, rather than a binary collision ap-
proach, properties of the VACF that incorporate ionic struc-
tural information through spatial correlation functions. Two
approaches have been presented, one based on the short-time
properties of the VACF itself and the other based on proper-
ties of its memory function, which gives us an estimate of
the error of our model. We have compared predictions based
on these models for the purely classical case and compared
with Eq. s12d to show that the diffusion coefficient can in-
deed be predicted in the strongly coupled regime to within
about a factor of 2. As mentioned above, we use the models
in the form of the ratios11d to ensure that the classical limit
is exact. Our main result is shown in Fig. 4. We found, for
typical white dwarf conditions, that the semiclassical correc-

tion is relatively small; in fact, the correction is smaller than
the uncertainty in the classical result and its fit. The correc-
tion is larger for smaller values ofG since ions can more
effectively probe configurations with ionic distances of order
Lth.

Our results reveal that better simulation results are needed
for the classical OCP insofar as it is the basis for studies of
impurity settling in white dwarfs. It would be straightforward
to employ Eq.s2d in such simulations to extend the basic
OCP result into the semiclassical regime. But, perhaps more
importantly, there is a need for accurate simulations of the
diffusion coefficient in strongly coupled mixtures with impu-
rities f2g.
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