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Semiclassical model for the ionic self-diffusion coefficient in white dwarfs
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Under the extreme conditions of massive white dwarfs, which have ionic densities that exé&eth®0
the ions can be both very strongly coupled and partially degenerate. We present a simple model for self-
diffusion in such white dwarfs that utilizes the known one-component plasma diffusion coefficient and scalings
derived from the short-time expansions of the velocity autocorrelation function and the memory function. Since
the ions are weakly degenerate, we utilize a simple semiclassical correction to the classical dynamics. We find
enhanced diffusion, relative to the purely classical calculation, which is more significant at smaller values of
the Coulomb coupling parameter.
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[. INTRODUCTION though there are many impurities, those that settle due to the
internal electric field are those that have a neutron excess,
The end point of stellar evolution of more than 95% of gnd22Ne is the dominant specidmass fraction 0.02with
stars is the white dwarf phase in which nuclear fuel no |Ongethat property. As thézNe drifts towards the center through
burns, residual energy radiates away, and the star slowlhye strongly coupled Coulomb liquid of mainly carbon
cools. Our knowledge of white dwarf evolution depends inand/or oxygen, the physical conditions vary from weakly
part upon uncertainties in the microphysical processes thajoupled through crystallization, if the star is well evolved. In
affect energy transport. Typical mass-radius relatididor  the weakly coupled regimé,< 1, diffusion can be described
white dwarf stars indicate that the ionic densitycan be- in terms of a sequence of independent binary collisions be-
come quite high; in particular, higher mass stars corresponglveen Debye-screened particlg. At moderate couplings,
to smaller radius stars, which implies very dense cores iT' ~1, the collisions become strong and the simple Debye
massive white dwarfs. Particle densities and temperatures aggreening picture begins to lose its validity. Under conditions
in the n~107%-10°*° cm™ and T~10°-10' K ranges, re- of strong coupling]’= 10, the plasma shows liquidlike be-
spectively, with older stars being cooler. These conditionsavior in which particles experience rapid oscillations in a
place the stars in the strongly coupled Coulomb liquid phasgransient cage formed by its nearest neighdéisand the
in which the collisional mean free path can be less than th@sual picture of a collision becomes inappropriate. As the
interparticle spacing and is, therefore, a meaningless cortoupling is further increased towards crystallization, collec-
cept; as the stars cool, crystallization occurs and processéise modes play an important role and diffusion is dominated
such as diffusion eventually cease. Strong Coulomb couplingy many-body physics. White dwarfs, due to their diversity
is defined in terms of the Coulomb coupling paramdfer in size, composition, and evolutionary path, cover all re-
=(Ze)?/(aT), where Ze is the ionic charge anda gimes of diffusion.
=(3/44mn)*3is the ion-sphere radius. Quantum corrections to A reduced model for impurity diffusion in white dwarfs
ionic propertied 3], such as the equation of std#l, can be has been constructed by Bildsten and co-work2}sIn their
non-negligible under such conditions because the ionic themodel, the electrons form a uniform neutralizing background
mal deBroglie wavelengthAy,=\2742/MT (M is ionic  and the star's composition is taken to be described by a
mas$ becomes comparable to the interionic spacing, whiclsingle speciegcarbon or oxygencharacterized by'. Their
is of order the ion-sphere radius. The degeneracy can bmodel allows the use of thelassicalone-component plasma
characterized by,/a=v2#l' /R, where the dimensionless (OCP diffusion coefficient7]
quantum density parametB;=a/ag; is the ratio of the ion-
sphere radius and thmnic Bohr radius ag;=%2%/M(Ze)% D= o az@ 1)
Typically, Rqis in the rangeR,~ 10°~10%, which reveals that S s
Am/a~Q.05—O.5 for typical conditions of a massive white o ) )
dwarf with the largest values occurring for light elementsWherew,=y4m(Ze)n/M is the ion plasma frequency, and it
(e.g., helium and cooler temperatures. One such microphysiis assumed that diffusion ceas@=0) upon crystallization
cal process is that of gravitational settling of impurities, (I'>173. Our goal is to extend the classical resdl} into
which occurs at a rate determined by the diffusion coefficienthe quantal regime under the reasonable assumption that the
[2]. Since white dwarf cooling is affected by energy transportextensions are small. This assumption allows us to use a
processes, it is of interest to understand diffusion in thesimple, classical-looking model for the ions. Our model is
strong-coupled, mildly degenerate Coulomb liquid regime. described in the first section and its thermodynamic predic-
Bildsten and co-worker2] have argued that some impu- tions are discussed. In the following section, a model for the
rities settle towards the center of the star and thereby releaskffusion coefficient is presented that employs properties of
gravitational energy that, in turn, affects the luminosity. Al- the velocity autocorrelation function and its memory func-
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tion [8] that relate the known resu(l) to the quantal result.
Finally, simple fits and a discussion are given.

Il. SEMICLASSICAL MODEL

White dwarf interiors consist of fully ionized, strongly =
coupled ions embedded in a homogeneous sea of very des
generate electrons. For this reason, white dwarfs are oftelg§
considered to be the best realization of the OCP model. Be—~
cause the quantal modifications are expected to be smal
(An,<a), we use a semiclassical extension of the OCP model
in which the classical ionic dynamics is modified via an ef-
fective pair interactiorf9], viz.,

(Ze)?
r

R)

1.5 20

o(r) = —(1-e"). )

FIG. 1. The logarithm of the radial distribution functiggR, \)
Here the parameteX is of orderAy, andr is the ionic sepa- is shown forI'=10 and the three values=0.02,0.1,0.2 as com-
ration. Such a model accounts for the finite extent of theputed within the HNC approximation. Note that the ionic structure
ionic wave function by smearing the usual Coulomb diver-is modified only at smalt and is nonzero at=0.
gence at small on the length scale ofy,. This semiclassical
OCP model is obtained from a semiclassical electron-ion
plasma in the limit of homogeneous electrons. Although it is U = Uogel ) + QU ), ©®
not necessary to do so, we assume that the semiclassiaghere uocgI')=u(0,I') is the total energy density of the
OCP can be described by a single parameterwhich we  classical OCR12]. To evaluatesu(\,I'), the only unknown
take to be an adjustable parameter that can be determined dfpjamity is the pair distribution functiog(R,T",\). For sys-
a variety of ways, including by matching properties obtainediems with long-range interactions it is known that this can be
from Eq. (2) to results from, e.g4 expansiong4] or path-  computed to high accuracy using the hypernetted chain
integral Monte-Carlo calculationfll]. Often the specific (HNC) equations. Although greater accuracy could be
form A=A/ V272 is used 9]. For a semiclassical system of achieved by including a bridge function, we note that the

N ions in volume(}, the Hamiltonian can be written as bridge function consistent with E¢R) is not known and the
N o uncertainties in the models are likely to be larger than uncer-
H=> P +V, 3) taintjes cregtgd by_ the neglect pf the bridge functipn. Of
i=1 2M particular difficulty is the resolution of the scale which

tends to zero in the classical limit. As such, we employ a

fast-Fourier transform in a standard HNC code with 16 384
(NN N bins within the rang&k=0-50; this corresponds to a bin size

EE v(ryj) - nY, | & ov(r-r))+V, (4  of ordersR~0.003. A simple relaxation algorithm was also
2521 j#i i=1J0 used that allows easy computation over the entire fluid re-

where the potential energy is

. : . ime [10]. In practice, quantities were computed froh
HereV, is the potential energy of the background. Given Eq.g 10_[173. Sompe typicanHNC results are shm?vn in Fig. 1 for

(3), we can estimate how quantum effects modify the trans;

port properties in white dwarf interiors I'=10 andr=0.02,0.1,0.2.
As a simple test of the validity of our modés), we can We have computed the semiclassical correcouth, I

compute the total energy densityand compare it with re- over the range.=0.02-0.3 and fit the results to obtain

sults obtained from different methods. For a system charac- SUNT) = V22T 7

terized byI" and \=A/a, the (dimensionlesstotal energy D)=y ' @

density is We can compare E@7) with the exact result to ordéi? [4]

(Hy 3 3r ([~ of I'?/4R,. Here, if we make the common choice df
unT)=~~="+ —f dR RO(R[g(RT,\) - 1], =Aw/ V27 [9], we obtainsu(\,T")=\2I"?/ 7R, This result
NT 2 2], reveals that the scaling with' and \ is correct and that,

(5) numerically, there is agreement to within a factor of less than
2. This agreement suggests that the semiclassical niggel

whereg(R,I",\) is the ionic pair distribution function, the might be reasonable for describing diffusion; however,
brackets (---) indicate ensemble averagin@(R)=1/R(1  higher-order# corrections[4] tend to spoil this agreement,
-e”), andR=r/a. The relation(5) is similar to the stan- suggesting that Eq2) is approximately valid to ordet?2.
dard expression fou of neutral fluids, with the exception Figure 2 compares the total energy based on(Bqwith the
that the background contribution enters via the —1 term in thé* expansion of Hansen and Vieillefos§é] and a path-
integral. In order to discuss the semiclassical correction téntegral Monte CarloPIMC) result of Jones and Ceperley
the OCP, Eq(5) is decomposed as [11]. This result indicates that our mod@) yields superior
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OCP[7], it is known that the VACF is strongly affected by
both binary collisions and collective effects, and that simple
approximations for the VACF, or its memory function, can-
not accurately describe the diffusion coefficiéste below.
In order to cope with this problem and keep the model
simple, our approach proceeds as follows. Suppose that we
have a model foD(\) = Dypge(N), WhereD oqe(N) depends
on quantities that we are able to calculate, like the pair dis-
tribution function. The ratio R(\)=DmodelN)/Dmogel0)
yields an approximation of the scaling between the semiclas-
sical and the classical diffusion coefficient. Our approach is
to assume that this scaling is exact, viz.,
0 : : : N : : D(\) =R(M)Dc, (13)
0 20 40 60 80 100 120 140 160

r with Dc=D(0) the classical OCP diffusion coefficient. A

FIG. 2. The thermal excess ener@y/NT=(E-Epco)/NT of g_ood es_“m"?“e 0D obtained W.lth molecular-dynamlcs_tech-
the OCP is shown based on E€) with A=Au/\2x2 (solid niques is given by Eq(l), which, when combined with a
e ; 4 . th’ Ve A ' model for R(\), allows one to evaluate the semiclassical
SC"), the Hansen-Vieillefoss&* expansiondot-dash, “HV"), and diffusi fiicientD(\). B f th hasis ol d
the Jones-Ceperley PIM@riangles, “PIMC’) result vsI for fixed fusion coetficien - because ot tné emphasis place

R,=200. The reference BCC Madelung energy EY../NT upon the classical result, we improved Efj). by combining
--1.791 85"/ 2. the original data with that from Ranganathainal.[15] and
fitted the data to the form suggested by Robfhal.[16] to
obtain

15

AE/NT

10

51 L= ~. classical

results to both the classical and th&expansion at largé. 154
This result, however, fortuitously arises because of the poor . _ é 173 :
convergence of thé? expansion. The range of applicability D¢ =0.0028 +0.005 - 1) :
of our model is clearlyR;>200, although\ could be chosen

to match the excess energy of the PIMC result for siRall ~ This form, with three parameters, describes deviations from
the simple, power-law fit used to obtain EG). The dimen-

Ill. SELF-DIFFUSION COEFFICIENT sionless di_ffusion coefficient is defined @§:D/wpa2. We
have considered two models f&(\)=D(\)/D(0) that de-
Plasma diffusion coefficients are typically obtained from apend on spatial correlation functions. Since the models em-
transport cross section that can be obtained either classicalploy different correlation information, we will have an esti-
or quantum mechanicalljy13]. In the strongly coupled mate of the sensitivity to a particular model.
plasma regime, however, there are important structural and The first model is obtained from the short-time expansion
collective phenomena that are not accounted for in thef Z(t) in the following manner. The leading-order terms in
simple binary collision picture. We therefore begin with the such an expansion are
fact that diffusion is a measure of the mean-squared displace- 5
. . . . t
ment of a single particle, which can be related to the velocity Zt)=1 _wé_ T (13)
autocorrelation functiofVACF) as 2

(12)

1 , where w2=(M/3T)(V?) is known as the Einstein frequency.
D :!ﬂ a<|fi(t) -ri(0F) (8 Any function f(t) satisfying Eq.(13) up to second-order in
time andl = [f(t)dt< is a possible approximation féit),
- exact up to the second-order in timze; an example is given by
:—f dt Z(t), (99  the Gaussian approximaticttt) ~ e &2 For the diffusion
0 coefficient, one obtains
whereZ(t) is the normalized VACHK14], T
) D(\) = —1. (14)
Z(t) = (vi(t) - vi(0)V{(0)). (10 M

Here r;(t) and v,(t) are the position and velocity of any Note that in our model _thexactvalue of the integral does
tagged particle in the system at tirheDespite the apparent NOt matter as we consider the rai(\) =D(\)/D(0). The
simplicity of this formulation, the calculation of the diffusion Einstein frequency can be written explicitly in terms of the
coefficient is an example of the many-body problem. Manyonic radial distribution function as

approaches, including the memory function formalism and 5 n
kinetic theory, have been devised to model the VACF in wEO\Fmfd3erv(r)[g(r,F,)\)—1]- (15)
simple liquids. The major difficulty arises from the fact that
the diffusion coefficient depends on dynamical processes ocFhe many-body contributions to the diffusion of a single
curring over disparate time scales. In the case of the classicphrticle enter here througd(r,I",\). Following the proce-
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dure described before, our approach yields the approxima- 2 onT (920(r)
tion >‘ E oo g(r)
Ry = (x-ZJm dR Re™\[1-g(R T x)]>_l/2 (16) Ty d3rd3r'(—’9 “”)(—’92”“'))
! 0 v ' 3’y araory/\ arlor]
X[g¥(r,r) +1], (23)

which has the limitD(\) — Ds asA — 0.

The second model is obtained by approximating of thewhich differs from the expression for neutral liquids by the
memory functionM(t) of the VACF. Recall thatM(t) and  term +1 in the last integral. In the absence of detailed knowl-
Z(t) are linked to each other by the generalized Langeviredge ofg®, we evaluate the second term on the right-hand
equation side of Eq.(23) with the Kirkwood approximation

g®(r,r") = gNg(rHg(r -r')

d t
d—tZ(t):—f dt M(t")z(t-t"), (17)
0 =99 1+ fd3q[8(q) - 1]
7N
and that the diffusion coefficient is exactly given by ( )}
ig-(r-r
T 1
= M(L M(t)dt) : (18) where S(q) is the static structure factor. After some tedious

manipulations, we obtain the approximation

ﬁr?]grz);;ité?:r? forM(t) can be constructed from the short- %é _ (ﬁ)"f dR Ry(R {~H(R)2 . 2( ’;R)) }
Mo=a1-5+ - 19 -]+ L) [ oats@ -
7 ’ 3\ 5 3/) 97\ 3/ J,
with X[(Q +2%(Q)] (24
wé M , with
2 =gt e (20)

n(Q= f dR R?g(R){{jo(QR)—ZJz(QR)}T)”(R)
0

Any function f(t) satisfying f(t)=1-t?+--- and I =[5 f(t)dt (R
< defines an approximation of the memory function + 2{jo(QR) + j,(QR}—— } (25)
M(t)zwéf(t/r), exact up to the second-order in time; an
example is given by (t)=secR(t/ 7). For the diffusion coef- .
fictent, one obtains Q) = f dR ﬁg(R){{jo@R) +]2QRIT'(R
0
T 1
D(\) = —-. 21 7'(R
M Mo . + {216(QR - 12(QR) )], (26

Such approximations have been widely used for neutral ligwhere

uids and are referred to as the “binary-collision” approxima-

tion, as they essentially describe well the short-time dynam- 1000 = S'”(X)

ics of the memory function when binary collisions dominate.

The timeris interpreted as the duration of a binary collision. and

In our model, the exact value of the integraloes not matter

as we consider the rati®(\)/D(0). In order to use this (%) = [sm(x) og )} sm(x)
H(X) =

model, we need to determineor equivalently the moment

<'r'i2> [see EQ.20)]. Introducing the triplet distribution func- ) )
are the spherical Bessel functions of order 0 and 2, respec-

i
on tively, andQ=agq. Following the procedure described before,
. N our approach yields the approximation

2~(3) "N — — — -
g¥rr) == X (B -rpdr-ry), (22 0
NG i 10, ! ! Ro(N) = :(()\; (27)
the momenti?) is explicitly with #(\) given by Eq.(24).
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FIG. 3. The OCP diffusion coefficient is shown based on the fit FIG. 5. The ratio of Eq(12) to Eq. (1) is shown vsI'. This
(12) to molecular-dynamics datigolid), the Gaussian approxima- indicates that the error of the fit is of the order of the semiclassical
tion for the VACF (dashegl and the hyperbolic secant approxima- correction.
tion for the memory functio{dot-dash. This result indicates the

level of accuracy of the two theoretical models. =0.1,0.2,0.3. These results illustrate that the quantal correc-
tions are quite small when<0.1 and that the correction is
We compare in Fig. 3 the fitL2) to classical OCP predic- more important for small.
tions based on Eq14) with |=/(7/2)(1/wg) (Gaussian ap- For very dense white dwarfs, we expect enhanced diffu-
proximation) and Eq.(19) with 1=1 (hyperbolic secant ap- sion and therefore expedited sedimentation. Consider, for ex-
proximatior) to assess the accuracy of the models. Note thaample, a pure carbon white dwarf with mass Mg, radius
both models are accurate to within a factor of about 2, whictR=0.00&R,, and temperatur@=10" K. Such a star would
indicates that models fd£(t) and M(t) can reasonably well have an ion number density of about4x 10?° cm™ or,
predict diffusive behavior over the entire fluid regime. It is equivalently, an ion-sphere radius @f=8.5x 10! cm.
interesting that Eq.19) underestimates Eq12) for the OCP, These conditions correspond 1q,/a=0.17 for which Eq.
since results for neutral fluids suggest the revégge (28) predicts an~1% correction in the strongly coupled fluid
Next we have computed Egd.6) and(27) over the same regime. Typical choices foi [9] will tend to have even
range of parameters. The resulting data were fit to the formsmaller corrections. The quantal enhancement is expected to
6.355 be larger than this example at higher densities, for lighter
11238.% 1}

T elementge.g., helium, and at lower temperatures.
1+2341.R%*

Dy(\) = D"C[l + 142049+

D'y(\) =Dg[1 +46.2%72-0.007 5332T]. (29 IV. DISCUSSION

Predictions from Eq.(28) are shown in Fig. 4 forx To describe diffusive transport in massive white dwarf
stars, we have constructed a model based on the effective
semiclassical potentidR). Since this model can also predict

116 thermodynamic quantities, we have compared the energy
114 \ with two other approaches to evaluate the accuracy of such
1.12 - an approach. We found that E) is accurate to ordet?,
1101 103 but does not have the_more _unphysical behav.ior.of the next
’ =5 #* correction. Comparison with PIMC results indicates that
~ 108 1. our model becomes inaccurate fB;=<200. This suggests
= 1064 . that a detailed description of quantum dynamics will require
................................................... a treatment beyond & expansion.
1040 Because the diffusion coefficient is difficult to calculate in
1.02 F7 the strongly coupled regime, we presented a model that em-
.................................................................................... p|oys the known diffusion coefficient of the classical OCP
1007 =02 | f lecular-dynamics simulation. We h i
rom molecular-dynamics simulation. We have given a
0.98 - ‘ - , ; ‘ - ‘ slightly different fit(12) to the simulation results, due to the
1030 50 70 gor 10 130 150 170 reliance on the classical limit. We should mention, however,

that the original simulation results of Hansen, McDonald,

FIG. 4. The correction factoDg/ D¢ versus coupling param- and Polloc 7] were only accurate to about 20%, mainly due
eterT for two values of\: A=0.2,0.3. Note that the correction is to the fit. In Fig. 5, we show the ratio of our fi12) to the
small for A <0.2 and decreases for increasiig original fit (1), which indeed has an overall variation of
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about 20%. Less is known about the systematic errors of thgon is relatively small; in fact, the correction is smaller than

simulations themselves and sources of these errors merit futhe uncertainty in the classical result and its fit. The correc-

ther study. tion is larger for smaller values df since ions can more
To obtain the semiclassical diffusion coefficient from the effectively probe configurations with ionic distances of order

classical result, we use, rather than a binary collision apAy,.

proach, properties of the VACF that incorporate ionic struc- Our results reveal that better simulation results are needed

tural information through spatial correlation functions. Two for the classical OCP insofar as it is the basis for studies of

approaches have been presented, one based on the short-timgurity settling in white dwarfs. It would be straightforward

properties of the VACF itself and the other based on properto employ Eq.(2) in such simulations to extend the basic

ties of its memory function, which gives us an estimate ofOCP result into the semiclassical regime. But, perhaps more

the error of our model. We have compared predictions baseiinportantly, there is a need for accurate simulations of the

on these models for the purely classical case and comparetiffusion coefficient in strongly coupled mixtures with impu-

with Eqg. (12) to show that the diffusion coefficient can in- rities [2].

deed be predicted in the strongly coupled regime to within

about a factor of 2. As mentioned above, we use 'Fhe models ACKNOWLEDGMENTS
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